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Abstract

The Duolingo English Test is a computer adaptive test of English language proficiency. In this paper, a measurement model for the
Duolingo English Test is proposed, and its formal characteristics are derived. A scalable real-time rating system, with favorable
statistical properties, is proposed and applied to data from the Duolingo English Test to address issues related to differential model
fit with respect to item and person characteristics. The results indicate that the signed residual time model fit the test data well, and
that there is not evidence of statistical bias toward different groups of test takers

This commissioned study is part of the Duolingo English Test external research collection.

Introduction

The Duolingo English Test is a large-scale, high-stakes, online
test of English language proficiency that can be delivered
anywhere and at any time. This approach to (language) testing
inherently comes with a cold start problem: one needs a large
item bank calibrated to an appropriate item response theory
(IRT) model before one can start administering tests. The
traditional solution to this problem, large scale pretesting, is
not only expensive but suffers from a number of drawbacks.
One needs large numbers of test takers to respond to items
under realistic testing conditions. Both ensuring realistic
testing conditions and getting test takers from the appropriate
populations are challenging.

To support anywhere anytime testing, the Duolingo English
Test is assembled uniquely for every test taker, in the form
of a computer adaptive test (CAT). For the Duolingo English
Test an alternative solution to the cold start problem is pursued.
Items are automatically generated, using machine learning and
natural language processing algorithms, to match the Common
European Framework of Reference for languages (CEFR,
Council of Europe, 2001), with item difficulty parameters
that are predicted using machine learning. Item responses
are automatically scored on a continuous zero to one scale.
The development and scoring of the Duolingo English Test
are documented in Settles, LaFlair, and Hagiwara (in press)
and LaFlair and Settles (2019). The Duolingo English Test
contains 10 item types, five of which are delivered in the CAT
administration. These five item types include a ctest, audio
yes/no vocabulary, text yes/no vocabulary, dictation, and elicited
speech. The other five item types are open-ended speaking and
writing tasks. The speaking tasks include a picture description
prompt, a text-based prompt, and an audio prompt. The writing

tasks include a picture description task and a text-based prompt.
Duolingo English Test test takers receive a minimum of three
and a maximum of seven of each of the CAT items; they receive
four each of the open-ended writing and speaking tasks.

Once real tests are being administered using the pre-calibrated
item bank, actual response data under high stakes testing
conditions from actual test takers become available. This
response data can be used to a) update where needed the pre-
determined item difficulties, b) evaluate the fit of the IRTmodel,
and c) to further train the machine learning and natural language
processing algorithms to obtain ever better pre-calibrated item
difficulties.

A CAT administration benefits both test security and
measurement accuracy. At the same time, however, it
complicates statistical analyses of item response data. Below we
introduce an appropriate measurement model for the Duolingo
English Test, and an appropriate scalable algorithm for statistical
inference on the parameters of the measurement model.

A Measurement Model for the Duolingo English Test

The basic observations collected with the Duolingo English
Test are continuous item responses between zero and one (xi),
with one (zero) indicating a fully (in)correct response. These
observations are used to find that value of ability (θ) that
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minimizes the following cross entropy:

LL(θ) =
∑
i

xi log(pi(θ)) + (1− xi) log(1− pi(θ))

in which pi(θ) is the item response function of the Rasch model:

pi(θ) =
exp(θ − δi)

1 + exp(θ − δi)

with δi the difficulty of item i. Aswe’ll see later on this approach
works, but being based on information theory rather than on a
statistical model, ignores that responses are inherently random.
That is, if the same person were to take the same test again, we
would not expect to see the exact same responses. A statistical
model for the item responses accounts for this, and allows for
looking at model fit, determining standard errors, and the like.

An appropriate item response theory (IRT) model that goes
with these data is the signed residual time model of Maris and
van der Maas (2012). Even though this model was originally
proposed for a particular scoring rule that combines response
accuracy with response time, the basic model is agnostic to this
fact, and just needs observations in a finite interval. The SRT
model is characterized in the following way for item scores xi

from 0 to 1:

f(x|θ) =
∏
i

f(xi|θ)

=
∏
i

exp(xi(θ − δi))∫ 1

0
exp(s(θ − δi))ds

=
∏
i

exp(xi(θ − δi))
exp(θ−δi)−1

θ−δi

This model is the straightforward extension of the Rasch model
to continuous responses, and it shares with the Rasch model
the property that the (person or item) sum scores are sufficient
statistics for the model parameters (person ability θ or item
difficulty δ).

To illustrate how the statistical model relates to the
information theory based estimation procedure of the Duolingo
English Test, we look at two simulated examples. For both
examples, we have 1000 students with standard normally
distributed ability and 50 items per student. For one simulation
we have the same 50 items with standard normally distributed
difficulty for all students, and for the other simulation the item
difficulties are normally distributed with a standard deviation
of 0.5 around the true ability of the student. The latter one
mimics an adaptive test. Data are simulated from the statistical
model, and ability is estimated by minimizing the cross entropy.
For both simulations the correlation between true and estimated
ability is high (0.82 for the linear simulation and 0.98 for the
adaptive simulation), with the one for the adaptive test being
significantly higher (as expected). However, looking at the

scatter plot of true versus estimated ability (Figure 1) we see
significant shrinkage for the linear test. For the adaptive test the
shrinkage completely disappears. In practice, the information
theory based approach works for the purpose of estimating
ability, but as said before the statistical approach provides
additional benefits.

The statistical model is not only a straightforward extension
of the Rasch model, but the relation between the two runs quite
a bit deeper. We show there is a one-to-one correspondence
between a continuous response and an infinite sequence of
binary responses, each from a (slightly different) Rasch model.
The correspondence allows us to use algorithms, originally
developed for binary responses, for continuous responses as
well.

To demonstrate this we define two new variables as follows:

yi1 = (xi > 0.5)

zi =

{
xi − 0.5 if yi1 = 1

xi if yi1 = 0

This construction separates the original continuous response
into two conditionally independent sources of information on
ability: Yi1⊥⊥Zi|θ, from which the original observations can
be reconstructed. Moreover, it is readily found that the implied
measurement model for Y is the Rasch model:

p(Yi1 = 1|θ) = p(Xi > 0.5|θ) = exp(0.5(θ − δi))

1 + exp(0.5(θ − δi))

For the other variable (Zi) we readily find its distribution to be
(over the interval 0 to 1/2):

f(zi|θ) =
exp(zi(θ − δi))
exp(0.5(θ−δi))−1

θ−δi

That is the distribution of Zi andXi belong to the same family,
with a different range for the values of the random variable.
As a consequence we can use the same approach to split up
Zi into two new variables, and hence recursively turn the
continuous response xi into a set of conditionally independent
Rasch response variables, with a discrimination that halves in
every step of the recursion.

To better understand this construction, let’s look a the second
step in the recursion:

yi2 = (zi > 0.25)

=

{
xi > 0.75 if yi1 = 1

xi > 0.25 if yi1 = 0

We see that among responses that are correct (Yi1 = 1), those
that are more correct are indicative of higher ability. Similarly,
among responses that are incorrect (Yi1 = 0), those that are less
incorrect are indicative of higher ability. These two indicators of
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Figure 1. Parameter recovery for a linear test (left) and an adaptive one (right) based on minimizing cross information.

ability are under the model on the same footing, and statistically
independent of the correctness of the response itself.

If we denote the binary response variable obtained in
the j-th step of the recursion by Yij , we obtain the
dyadic expansion of the continuous response variables into
conditionally independent binary response variables, as depicted
in Figure 2.

Another way to look as this is captured in the following
formula:

J∑
j=1

Yij

2j
→

J→∞
Xi

As 2j tends to zero rapidly, it only takes a few of the
binary response variables to closely approximate the original
continuous response.

In the next section we’ll make good use of this relation to
develop a way to deal with statistical inference at scale for the
proposed statistical model.

Method: Rating System for the Duolingo English Test

The Duolingo English Test being an adaptive online test with
both a large number of test takers and a large number of items
makes direct likelihood based inference a challenge, as such
approaches don’t scale very well.

Rating systems, such as the Elo (1978) rating system
(originally developed for tracking ability in chess) are highly
scalable, but come with their own shortcomings. The main
shortcoming is that their statistical properties are not very
well understood, making it difficult to assess standard errors
or evaluate model fit. Brinkhuis and Maris (2019) provides
a general introduction to tracking systems, and the minimal
properties they should have.

The urnings rating system provides an alternative. It’s
statistical properties are well understood and it is highly
scalable (with person and item ratings being updated after every
response). In equilibrium, urnings are known to be binomially
distributed variables, with the urn size as a design parameter
(similar to the K-factor in Elo ratings, and the logit of the
probability being the ability/difficulty in the Rasch model).

In order to better understand the conceptual underpinnings of
the urnings system, we consider the following game of chance
where two players draw a ball from their own (infinite) urn
containing a proportion πp of green balls (the others being
red) until they have drawn balls of different color. A simple
derivation shows that the probability with which player p wins
the game (i.e., ends up with a green ball, which we denote by
Xpq = 1) is given by the Rasch model:

p(Xpq = 1|θp, θq) =
πp(1− πq)

πp(1− πq) + (1− πp)πq

where θp = ln(πp/(1− πp)). Up to some technical details,
the urnings rating system comprises of mimicking this game of
chance with a finite sized urn and simply swapping the results.
Urnings ratings are the number of green balls (Up) in these finite
sized urns.

Every person and item has an urn with red and green balls.
Whenever a person responds to an item, a correct response is
coded as a green ball for the person, and a red ball for the item,
whereas incorrect responses are coded as a red ball for the person
and a green ball for the item. From the person and item urns
we draw a ball from each, with replacement, until they are of
different colors. These are removed and replaced with the coded
response balls. For technical reasons, to ensure that urnings
are binomially distributed, with some (small) probability, the
replacement does not take place.
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0 1 P (Yi1 = 1|θ) = exp(0.5(θ−δi))
1+exp(0.5(θ−δi))

0 1 0 1 P (Yi2 = 1|θ) = exp(0.25(θ−δi))
1+exp(0.25(θ−δi))

0 1 0 1 0 1 0 1 P (Yi3 = 1|θ) = exp(0.125(θ−δi))
1+exp(0.125(θ−δi))

Figure 2. (First three steps of a) dyadic expansion of continuous responses into conditionally independent binary response variables.

Figure 3 gives an overview of the urnings updating scheme,
and the interested reader is referred to Maris, Bolsinova,
Hofman, van der Maas, and Brinkhuis (2019) for the formal
underpinning as to why this updating scheme produces
binomially distributed ratings, when in equilibrium.

The technical details have to do with the match making
probabilities, or the adaptive engine, which assigns probability
Mpi(u) to person p answering question i, as some function of
their urnings, and an extra Metropolis-Hastings step needed to
ensure we end up with the right invariant distribution.

The differences in discrimination that derive from the dyadic
expansion of the continuous response variables in the SRTmodel
translate into differences in the stakes of the game. Literally,
when the stakes equal 4*, we continue drawing four balls from
both urns until we get four green ones from the one urn and four
red ones from the other. We once again just replace these four
balls by four of the color consistent with the real item response.
That is, a learner stands to loose or gain four balls based on their
response to this particular item, which is why we refer to the
discriminations as stakes in this context. Put differently, the
higher the stakes, the larger the impact the item response will
have on estimated ability.

Figure 4 highlights some of the key features of the urnings
rating system, based on simulated data. The left panel of the
figure demonstrates that the urnings rating system does what it
is supposed to do. For every combination of urnings the fitted
and observed proportions of correct responses are the same. The
right side panel demonstrates that for a given urn size, we can set
up a 95% coverage ellipse and get the theoretical guarantee that
95% of our data (combinations of true ability and urnings) are
inside of this ellipse. This gives guarantees on overall reliability
and local measurement precision.

Results

The Duolingo English Test comprises three parts, a regular CAT,
a writing section, and a speaking section. The data are highly
skewed in terms of the number of responses for unique items in
the CAT section, with the vast majority of the items having only
a handful of observations (< 10).

As the data are very skewed we cannot just estimate item
difficulty parameters for the CAT items. Hence, for the purpose
of analyzing the data new synthetic items were constructed by
combining the sub-skill an item relates to with the (rounded)

item level as provided by Duolingo. This gives rise to 55
“items”. For the items in the CAT section we used Yi1 for the
analyses.

The items in the writing and speaking section are automati-
cally scored on a scale from 0 to 10. These are divided by 10,
and we use the first three steps in the dyadic expansion for the
analyses. The resulting stakes for these items are 4, 2, and 1,
respectively. Hence, every response in these sections contributes
7 times as much as a response in the CAT section.

Figure 5 demonstrates that the Duolingo English Test
responses fit the Rasch model very well. As the items are overall
relatively easy, most of the data sits in the lower right quadrant,
which explains why some of the empirical contours are smoother
than others. Across the board, for all combinations of skill and
difficulty, the fit is excellent. Since the expected proportions for
itemswith different stakes are not easily displayed in one contour
plot, the right side just plots the observed versus expected
proportions of correct responses. The closer these are to the
straight line, the better the model fits the data.

To evaluate whether the results depend on how the synthetic
itemswere constructed, we repeated the analyses with double the
amount of synthetic items. The basic outcome of the analyses is
that for every observation the probability that it is correct is based
on the current urnings of both the person and the item. Figure
6 replicates the main findings, based on these more fine grained
synthetic items. As almost every point in the top panel of Figure
6 relates to a particular combination of person and item urnings,
and not all of these combinations occur with equal frequency, we
also look at rounded fitted values. The middle and bottom panel
of Figure 6 provide the same information as in the top panel
when fitted values are rounded to single or double digits. The
middle panel of Figure 6 shows that whenever, based on urnings,
the rounded probability of a correct response equals 0.7, say, the
observed proportion of correct responses is in perfect agreement.
Turning to the double digit rounding (bottom panel of Figure 6),
we see some more scatter which is due to the smaller numbers of
observations for double digit rounded values. Similarly, in the
top panel of Figure 6 where almost every observation relates to
a particular combination of person and item urnings, the scatter
increases more due to smaller sample sizes.

∗Remember that we can always multiply discriminations by some number, as
long as we also divide the ability and difficulty parameters by the same number.
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Match making: pair person p with item i with probabilityMpi(u)

Reality:
repeat

y∗
p ∼ Bernoulli(πp)

y∗
i ∼ Bernoulli(πi)

until y∗
p ̸= y∗

i

return (y∗
p , y

∗
i )

Urnings:
repeat

yp ∼ Bernoulli(Up/n)
yi ∼ Bernoulli(Ui/n)

until yp ̸= yi
return (yp, yi)

Update:

u∗
p = up + y∗

p − yp

u∗
i = ui + y∗

i − yi

Metropolis-Hastings: accept new urnings with probability:

min
(
1,

up(n− ui) + (n− up)ui

u∗
p(n− u∗

i ) + (n− u∗
p)u

∗
i

Mpi(u∗)
Mpi(u)

)

Figure 3. Urnings rating system

acceptance rate= 0.973
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Figure 4. The left figure gives contours for the predicted (straight) and observed (squiggly) proportion of correct responses for every combination
of urnings, with person urnings on the horizontal and item urnings on the vertical axis. The right figure gives the relation between true values and
urnings. The red ellipse gives the 95% coverage ellipse (i.e., 95% of the combinations of true ability and urnings are inside of the ellipse). Both
figures are based on a simulated example.

Logistic regression: Main effects only

The close fit between the data and the model already provides
key evidence of there not being large violations of model fit. To
evaluate whether there is substantial differential model fit with
respect to the various item types and person characteristics, we
ran a logistic regression with the binary response variables as the
dependent variable and the logit of the fitted value† (logit(urn.fit)
in the Tables), item type, gender, operating system, and screen
size as independent variables. For items in the CAT part of
the Duolingo English Test the first binary variable from the

dyadic expansionwas used, whereas for the speaking andwriting
section the first three were used. Table 1 gives the results of the
logistic regression.

To put the results in Table 1 into perspective, the standard
deviation of the logit fitted values (excluding those that are
infinite) is 2.22. Maybe the most surprising result is that given
the sample size, many effects are not significantly different from

†For every observation we compute the probability of it being correct using the
current value for person and item urnings and the stakes.
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Figure 5. Left panel: contours for the fitted and observed proportion of correct responses for every combination of urnings for the CAT responses.
Right panel: Observed versus fitted proportions of correct responses for every combination of urnings, for all responses.

zero. Even those that are are very small (in terms of logits). The
only effect that stands out is for the writing-text item type, which
with an effect of 0.335 is still not very large.

With the exception of a small effect for the writing-text item
type, neither item type, nor operating system, nor screen size,
nor geographic location add anything to urnings when it comes
to explaining the observed responses. Two test takers with the
same urnings, but one known to be a male test taker from Africa,
on a windows machine with a small screen, the other a female,
from Asia, on a macintel with a large screen, has no impact on
how well we can explain their observed responses.

Logistic regression: Main effects and interactions

A final step in the analyses is looking at interactions between
item type and various person covariates. The output of this
analysis is split over a number of tables. As is typical for logistic
regressions with interactions between nominal independent
variables, interpreting the results is a bit tricky. Moreover,
the independent variables are not truly independent, and some
collinearity is likely to be present.

Fortunately, not a lot of interpretation is needed. For every
observation, we get a fitted value from the logistic regression,
and another one based on urnings alone. These correlate 0.999,
which signifies that not a lot is happening, that is not accounted
for by urnings alone. Put differently, adding in all of the main
effects and interactions does not lead to a noticeable increase in
model fit.

Discussion

The take away messages from these analyses are that a) the SRT
model seems to fit the Duolingo English Test data well, and b)
there is no compelling evidence of there being differential model
fit for different groups of test takers, item types, or computers

(screen size and operating system). From a construct validity
point of view, the Duolingo English Test seems to be in good
shape.

These findings do not preclude the existence of differential
item functioning for a particular item. However, as every
automatically generated item is only administered to a small
number of test takers detecting, it would be difficult, and its
impact would also be small.

The cross entropy based approach currently in use, at least
for an adaptive test, seems to function quite well. The added
value of being able to evaluate model fit, reliability, and standard
errors that come with a model based approach seem worthwhile
to pursue.

As the Duolingo English Test is intended to measure the
various skills that together comprise language proficiency, it
is comforting that the data support giving test takers a single
composite score. However, for individual test takers there can
be great value in getting information on their standing with
respect to the various finer grained skills. Such information
helps determining which skills they would need to improve on
to increase their overall score.

Such information is worthwhile, and can be delivered by
(an extended version of) the urnings rating system. As the
Duolingo English Test is designed to measure English language
proficiency, using a more fine grained diagnostic rating system
could help learners in their preparation for the Duolingo English
Test, and their becoming proficient in English.

The results reported here are a snapshot of the current state of
affairs. With the population of test takers and the world around
us changing, continuously monitoring (differential) model fit
over time and across populations is important to ensure that
scores remain comparable.
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Figure 6. Top panel: Observed versus fitted proportions of correct
responses for every combination of urnings for the more fine grained
synthetic items. Middle panel: Observed versus fitted proportions of
correct responses, rounded to a single digit for the more fine grained
synthetic items. Bottom panel: Observed versus fitted proportions of
correct responses, rounded to double digits for the more fine grained
synthetic items

Table 1. Logistic Regression

Predictor Effect SE

Intercept 0.076∗∗∗ (0.022)
logit(urn.fit) 0.981∗∗∗ (0.004)
audiovocab
ctest 0.034∗ (0.019)
speaking-image −0.058∗∗∗ (0.019)
speaking-audio −0.096∗∗∗ (0.017)
speaking-text −0.063∗∗∗ (0.019)
dictation −0.099∗∗∗ (0.019)
elicited speech 0.062∗ (0.036)
vocab 0.020 (0.023)
writing-image −0.059∗∗∗ (0.019)
writing-text 0.335∗∗∗ (0.028)
windows
android 0.017 (0.371)
linux 0.065 (0.053)
macintel 0.026∗∗ (0.011)
male
gender unknown 0.018∗ (0.011)
female 0.007 (0.012)
other 0.140 (0.216)
Europe
unknown −0.035 (0.051)
Africa −0.031 (0.027)
Americas 0.004 (0.017)
Asia −0.038∗∗ (0.016)
Oceania −0.055 (0.104)
< 800
800-899 0.002 (0.013)
900-999 0.004 (0.013)
≥ 1000 0.020 (0.014)

Observations 363, 689
Log Likelihood −164, 865.700
Akaike Inf. Crit. 329, 781.300

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

© 2020 Duolingo, Inc



8 Duolingo Research Report DRR-20-02

Table 2. Main Effects

Predictor Effect SE

Intercept −0.094∗∗ (0.046)
logit(urn.fit) 0.987∗∗∗ (0.004)
< 17
17− 25 0.088∗∗ (0.043)
26− 45 0.216∗∗∗ (0.047)
> 45 0.333∗∗∗ (0.086)
audiovocab
ctest −0.045 (0.060)
speaking-image 0.214∗∗∗ (0.061)
speaking-audio 0.119∗∗ (0.053)
speaking-text 0.212∗∗∗ (0.061)
dictation 0.017 (0.058)
elicited speech 0.546∗∗∗ (0.120)
vocab −0.305∗∗∗ (0.067)
writing-image 0.339∗∗∗ (0.056)
writing-text 0.593∗∗∗ (0.086)
windows
android 0.310 (1.096)
linux 0.047 (0.167)
macintel 0.108∗∗∗ (0.036)
male
unknown 0.024∗∗ (0.011)
female 0.036∗∗∗ (0.012)
other 0.148 (0.225)
Europe
region unknown 0.003 (0.051)
Africa −0.078∗∗∗ (0.027)
Americas −0.028 (0.017)
Asia −0.062∗∗∗ (0.016)
Oceania 0.052 (0.105)
< 800
800− 899 0.101∗∗ (0.041)
900− 999 0.017 (0.041)
≥ 1000 0.160∗∗∗ (0.045)

Table 3. Age by Item Type interactions

Predictor Effect SE

17− 25: ctest 0.246∗∗∗ (0.062)
26− 45: ctest −0.155∗∗ (0.067)
> 45: ctest −0.311∗∗∗ (0.120)
17− 25: speaking-image −0.147∗∗ (0.062)
26− 45: speaking-image −0.251∗∗∗ (0.067)
> 45: speaking-image −0.182 (0.121)
17− 25: speaking-audio −0.117∗∗ (0.054)
26− 45: speaking-audio −0.186∗∗∗ (0.058)
> 45: speaking-audio −0.266∗∗ (0.106)
17− 25: speaking-text −0.188∗∗∗ (0.062)
26− 45: speaking-text −0.263∗∗∗ (0.067)
> 45: speaking-text −0.318∗∗∗ (0.120)
17− 25: dictation 0.004 (0.059)
26− 45: dictation −0.220∗∗∗ (0.064)
> 45: dictation −0.608∗∗∗ (0.116)
17− 25: elicited speech −0.245∗∗ (0.122)
26− 45: elicited speech −0.290∗∗ (0.130)
> 45: elicited speech −0.531∗∗ (0.217)
17− 25: vocab 0.502∗∗∗ (0.069)
26− 45: vocab 0.621∗∗∗ (0.077)
> 45: vocab 0.733∗∗∗ (0.154)
17− 25: writing-image −0.240∗∗∗ (0.056)
26− 45: writing-image −0.532∗∗∗ (0.060)
> 45: writing-image −0.549∗∗∗ (0.114)
17− 25: writing-text −0.148∗ (0.088)
26− 45: writing-text −0.365∗∗∗ (0.093)
> 45: writing-text −0.641∗∗∗ (0.173)
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Table 4. Platform by Item Type interactions

Predictor Effect SE

ctest: android 7.792 (52.138)
speaking-image: android 1.054 (2.396)
speaking-audio: android −0.299 (1.426)
speaking-text: android 0.332 (1.688)
dictation: android −1.364 (1.445)
elicited speech: android 7.398 (51.488)
vocab: android 7.687 (44.862)
writing-image: android −0.661 (1.377)
writing-text: android
ctest: linux 0.172 (0.248)
speaking-image: linux −0.158 (0.234)
speaking-audio: linux −0.212 (0.206)
speaking-text: linux 0.159 (0.237)
dictation: linux 0.101 (0.222)
elicited speech: linux −0.248 (0.432)
vocab: linux 0.316 (0.316)
writing-image: linux 0.072 (0.213)
writing-text: linux 0.075 (0.344)
ctest: macintel 0.013 (0.052)
speaking-image: macintel −0.130∗∗∗ (0.049)
speaking-audio: macintel −0.128∗∗∗ (0.043)
speaking-text: macintel −0.154∗∗∗ (0.049)
dictation: macintel 0.014 (0.047)
elicited speech: macintel −0.714∗∗∗ (0.093)
vocab: macintel 0.006 (0.062)
writing-image: macintel −0.201∗∗∗ (0.047)
writing-text: macintel −0.157∗∗ (0.073)
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Table 5. Screen Size by Item Type interactions

Predictor Effect SE

ctest: 800− 899 −0.074 (0.059)
speaking-image: 800− 899 −0.109∗ (0.057)
speaking-audio: 800− 899 −0.101∗∗ (0.050)
speaking-text: 800− 899 −0.093 (0.057)
dictation: 800− 899 −0.047 (0.054)
elicited speech: 800− 899 −0.079 (0.112)
vocab: 800− 899 −0.151∗∗ (0.071)
writing-image: 800− 899 −0.022 (0.054)
writing-text: 800− 899 −0.091 (0.083)
ctest: 900− 999 −0.036 (0.059)
speaking-image: 900− 999 −0.055 (0.057)
speaking-audio: 900− 999 −0.029 (0.050)
speaking-text: 900− 999 −0.067 (0.057)
dictation: 900− 999 −0.039 (0.055)
elicited speech: 900− 999 0.195∗ (0.111)
vocab: 900− 999 −0.083 (0.070)
writing-image: 900− 999 0.050 (0.055)
writing-text: 900− 999 0.160∗ (0.085)
ctest: ≥ 1000 0.057 (0.065)
speaking-image: ≥ 1000 −0.193∗∗∗ (0.062)
speaking-audio: ≥ 1000 −0.153∗∗∗ (0.054)
speaking-text: ≥ 1000 −0.173∗∗∗ (0.062)
dictation: ≥ 1000 −0.111∗ (0.059)
elicited speech: ≥ 1000 −0.268∗∗ (0.117)
vocab: ≥ 1000 −0.182∗∗ (0.078)
writing-image: ≥ 1000 −0.083 (0.059)
writing-text: ≥ 1000 −0.090 (0.092)

Observations 357, 384
Log Likelihood −161, 330.900
Akaike Inf. Crit. 322, 877.800

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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